BACKPAPER: ALGEBRA II

Date:

The Total points is **100**.

Notation: \mathbb{F}_p denotes the finite field of p elements where p is a prime number.

- (1) (10 points) Let L/\mathbb{Q} be a finite extension. Show that L contains finitely many roots of unity.
- (2) (20 points) Let α be algebraic over \mathbb{Q} , L be the Galois closure of $\mathbb{Q}(\alpha)/\mathbb{Q}$ and $G = \operatorname{Gal}(L/\mathbb{Q})$. For any prime p dividing the order of G, show that there exists a subfield $F \subset L$ such that [L:F] = p and $L = F(\alpha)$.
- (3) (15 points) Let F be a field of characteristic p > 0. Show that K/F is purely inseparable iff there is a unique F-embedding of K into the algebraic closure of F.
- (4) (20 points) Show that $\operatorname{Gal}(\overline{F}/F) = \hat{\mathbb{Z}}$ where F is a finite field and \overline{F} its algebraic closure.
- (5) (15 points) Let L/F be a finite field extension. Show that if L/F is a Galois extension then there exist an $\alpha \in L$ such that its trace $T_{L/F}(\alpha) \neq 0$.
- (6) (20 points) Let F be a field of characteristic p and $a \in F$ be such that the polynomial $f(Z) = Z^p - Z - a$ is irreducible in F[Z]. Let α be a root of f(Z) in some fixed algebraic closure \overline{F} of F. Let $\beta \in \overline{F}$ be such that $c := \beta^p - \beta \in F$. Show that if $a - uc = x^p - x$ for some nonzero $u \in \mathbb{F}_p$ and some $x \in F$, then $F[\alpha] = F[\beta]$.